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ABSTRACT

Two related methods for the hierarchical representation
of curve information are presented. First, edge pyramids
are defined and discussed. An edge pyramid is a sequence of
successivel- lower resolution images, each image containing
a summary of the edge or curve information in its predecessor.
This summary includes the average magnitude and direction in
a neighborhood of the preceding image, as well as an inter-
cept in that neighborhood and a measure of the error in the
direction estimate. An edge quadtree is a variable-resolution
representation of the linear information in the image. It is
constructed by recursively splitting the image into quadrants
based on magnitude, direction and intercept information.
Advantages of the edge quadtree representation are its ability
to represent several linear features in a single tree, its
registration with the original image, and its ability to
perform many common operations efficiently.
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I. Introductiaj

Edges provide much information about the contents of an image

Often this information is hard to interpret because of the large

amounts of data involved and the existence of spurious edges that

arise from noise in the image. This paper presents two related

approaches to representing edges that attempt to overcome some of

the difficulties in analyzing edges. The first approach is based

on the use of a pyramid, or sequence of images, each a lower

resolution version of its predecessor. The second involves a

variable resolution representation, in which the local consisten-

cy of the edges determines the resolution at which they are

represented. This approach builds a quadtree from the image, with

leaves in the tree storing information about the edges that pass

through square subregions of the image. Both of the representa-

tions are able to represent not only edges, but any linear infor-

mation.

Many researchers have taken advantage of the pyramid structure to

devise various efficient image-processing dlgorithms (E8), [14],

[303, C313, [323) Most of these algorithms, however, nave dealt

with images containing e'tended homogeneous regions, o,- blobs.

The use of pyramids in lineir feature analysis is significantly

more complex than in region analysis. This is because a pyramid

is well suited for representing images whose major foatures are

two dimensional. Such features tend to retain their ir tegrity and

remain recognizable when lower resolution ver sions of tho image

are constructed using a simple rule such as averaging over small



local neighborhoods. In contrast, the important features of edge

or curve images are concentrated in a small proportion of the im--

age, and it is the positioni and orientations of the edges or

curves that are the important information in the image. This pa-

per provides a method of constructing edge pyramids that allows

the advantages of the pyramid structure to be applied to edge and

curve images Some of these advantages include the compression of

data to manageable size, and the ability to direct costly

analysis in small regions o- the original image, or set parame-

ters such as thresholds. Projecting down from a given level in

the pyramid also gives rise to an image in which all the features

are of a known minimum size, and which has had much of the noise

smoothed out.

A system has been implemented that builds pyramids from edge im-

ages, and can reconstruct edge images from low re olution levels

in the pyramid. This system inrludes an edge anhancement scheme

that is interesting in its own right. It als., shows empirically

the ability of an edge pyramid to retain most of the useful in-

formation at low resolutions, and the abilit, to reduce the

amount of noise in the image.

The edge quadtree representation uses the same information as the

edge pyramid, but has the ability to change the resolution of the

representation to account for ttne edge information in the image.

Thus, where edges are long and have consistent diiections, large

portions of the edges can be represented by leaves high up in the

quadtree. Where edges are close together, however, or at corners,



much smaller leaves may be needed to represent the edge informa-

tion. This gives rise to a polygonal approximation of the curve

information. The quadtree is shown to be ueful for 'epresenting

several edges or curves in a single structure, in contrast to

other representations like the strip trees of Ballard ([13), the

upright rectangles of Burton ([4]), and the chair, codes of Free-

man ((183). The representation allows many common edge opera-

tions to be per-Formed efficiently, and the fact that it is in

registration with the image and with ordinary quadtree represen-

tations of region-like information built from the image, simpli-

fies interaction between region and edge operations.
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A pyramid to be used in edge or curve analysis cannot simply be

constructed by building an averaged pyramid and then applying an

edge detector at each level. This is because smoothing in the py-

ramid might cause some edges to be missed, while those edges that

are found will be displaced relative to the original image be-

cause the edge detector is operating on a different image. Were

it not the case that direction information is crucial in edge

analysis, a pyramid could be constructed from an edge magnitude

image by using the maximum value of the magnitude in each neigh-

borhood of the image as the value of a point in the successor

level of the pyramid. Such an approach has been used to construct

a pyramid of line information (Hanson & Riseman, [73)

For the purposes of this diicussion 'it is assumed that an edge

image has been constructed with information stored at the pixels

through which the edges pass. In order to construct an edge py-

ramid that preserves as much information as possible between lev-

els, certain information must be present at each point of each

level, as a summary of the information in the (orresponding

neighborhood of its predecessor. In the implementation to be

described below, the neighborhoods were oF size 4 by 4, with

overlap between adjacent neighborhoods. The minimum information

to be stored at each point is an estimate of the magnitude and

direction of the edge(s) through the corresponding neighborhood.

In addition, an intercept point is needed to fix the position of



an edge in a neighborhood. A measure that is also useful is an

indication of the error in the direction estimate Errors will

usually be high at corners or where more than one edge passes

through a neighborhood. The error term can be used to signal

such situations, and cause higher levels of the pyramid to ignore

such regions. This gives rise to a class of edge quadtrees -Sec-

tion 3).

Thus, it is necessary to provide a means of estimating the magni-

tude and direction of the edge(s) passing through a neighborhood,

and an intercept point for each edge. To simplify natters, and to

prevent the amount of information stored at each point from grow-

ing in an unbounded way, each neighborhood is restricted to hav-

ing a single edge passing through it. Should more than one edge

pass through a neighborhood, the best edge is sought using the

following procedure.

The neighborhoods used in the implementation were of size 4 by 4,

with each neighborhood sharing two rows with its vertical neigh-

bors (North and South of it), and two columns with its horizontal

neighbors (West and East). The neighborhoods are s.hown in Figure

1. The method is based on the observation that the central 2 by 2

regions are disjoint and cover the picture. Thus, by first find-

ing the best path through the central regions, and then ext- ding

it to the full 4 by 4 neighborhoods, the complexity of computa-

tion is significantly reduced.

Each point in an edge image contains two pieces of information, a

magnitude and a direction. Within the central 2 by 2 region of
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each 4 by 4 neighborhood, the points having the maximun, magni-

tude, the next to maximum magnitude, and the minimum magnitude

are found. Based on these values, a decision j. made as to wheth-

er or not an edge exists in the neighborhood, and, if an edge ex-

ists, what kind of edge it is.

If the maximum value is greater than some minimum (currently 2 in

the implementation) and the next to maximumi value is greater than

the minimum value, an edge with two points in the evtral region

is assumed to exist unless the directions of the two points are

not consistent (i.e. differ by more than 45 degrees) If one

point is significantly greater than the rest in the central re-

gion, the assumption is made that an edge passes through the 4 by

4 neighborhood, but only touches one corner of the central 2 by 2

region. If no point differs significantly from its neighbors

(i.e. by more than 2), no edge is assumed to pass through the

neighborhood. Note that an edge could still pass through the 4 by

4 neighborhood. It would be represented, however, by the adjacent

neighborhood through whose -enter it passed.

It must be understood that two kinds of direction information are

used in evaluating edge continuation and edge consistency. First,

there is the direction established by the edge detector as an es-

timate of the direction of the edge through a point. Second,

there is the direction from a point in the grid of the image to

another point. For example, a point has eight immediate grid

neighbors, at angles of 0, 45, 90, .... degrees around it. These

fixed angles, together with the directions calculated for edges

'p



at a point and its neighbors, are used to establish the continui-

ty and consistency of neighboring edge poinwts.

An edge with two points passing through thP ce,,tral .' hq j ' rP(1o1r

may consistently be extended in three ways at each end (Figure

2a). The assumption made is that edges do not change direction

too radically (i.e. by more than 45 degrees per pixel). Thus, in-

stead of looking for all possible sequencez Of four points

through a 4 by 4 neighbor-hood, two sets of chree continuations

are all that need be examingd. The directions of tiiese points are

required to be compatible vith the two-point edge fcr them to be

considered as eligible for .ontinuing the edge Should more than

one extension be found at each end, the best is chosen based on

the grid angle between the points, their directions, and their

magnitudes. The best extension at each end is used to adjust the

magnitude and direction of the corresponding central edge point.

For one-point edges there a e five possible ex+ensio-s in the 4

by 4 neighborhood (Figure 2b). The best comp.,tible extension is

used to adjust the edge point here too. (Note that although only

two extensions are compatible with the assumption that edges bend

gradually, the other three points must be examined tri allow for

the case where an edge terminates inside the neighboihood). If no

compatible edge extension can be Fotnd, the edge magnitude it de-

creased.

The above process is applied to all 4 by 4 neighborhoods in

parallel. It may be iterated to allow information to propagate

along the edges. The result is a preferred edge through each
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neighborhood. These chosen edges are used to consti'uct the edge

p yr am i ki

[he process that .3c jailq constructs the pyram d ic murh bimpIer

than that which establishes the best edgis For each neighbor-

hood, it must calculate a magnitude, direct on intercept, and

direction error value. The magnitude is cal ulated as the mean of

the magnitudes in the 4 by 4 neighborhood. 'he uirection is cal-

culated as the mean of the directions .f those points in the

neighborhood with non-zero magnitude. The error term is the

square root of the sum of s-quares of differences between the in-

dividual directions and the mean direction. The intercept is one

of four values. denoting the position of the maimum magnitude

point in the 2 by . central region of the neighborhood The

values are only calculated for a region if an edge actually

passes through the central 2 by 2 region. These values are suffi--

cient to r-construct the edge to within the error tolerance.

Other, more omplex pyramid construction methods c3uld be imple-

mented. For example, it would be possible to use informatioT high

up in the pyramid to alter decisions made earlier. Because a de-

cision about the edge through a quadvant is made based only on

local information, it might be found that a different decision

would have made the edges higher up in the pyramid more con-

sistent. By backtracking to lower levels and altering the deci-

sions made there, perhaps a more informed result would be ob-

tained.

No, that more than one edgB might pass through a neighborhood.



T; fi th i ,, , . Lan be expected that the eriorr term i I I ,

large, and the reconstruction less reliable Reconstructing a

level from its Luccessor is also a simple process, altnough so--

phisticated and complex methods could be devised that would pro-

duce improve', reconstructions. The method that was implemented

makes no u.:e of the error term, and does not rpquiTe adjacent

neighborhoods in the reconstructed image to be c.)nsistent The

process simply expands each point to a 4 by 4 neighbrorhouo. and

assigns the mean magnitude and direction stored at the point to

each edge point in the expanded neighborhood. Points are chosen

as edge points by requiring the edge to pass through the inter-

cept point, and to lie along the assigned direction. The recon-

structions that result are usually very reasonable, with the er-

rors occurring only where there are sharp corners, or where edges

are close together. The results can often be impro'..ed by applqinq

the best edge routine discussed above.

2.2 Examples

The edge images for the examples presented belcw w ?re obtained by

applying a zero-crossing edge detector (Marr & Hilareth, (11) to

gray level images. The edge detector returns magnitude and direc-

tion values for points corresponding to zero Lrossings of the La-

placian or second directional derivative of the image intensity

The zero crossings are approximated by the zero, points of the

difference between two Gaussian-like functions with different

standard do iations. The Laplacian is calculated using the

hierarchical discrete correlation method of Burt (33). For each



zero crossing point, a 5 by 5 Prewitt-like operator is used to

give magnitude and direction information. The advantages oF us-

ing a zero-crossing detector are that the edges are thin and the

boundaries are closed curves. The edge pyramid process will, how-

ever, work for any edge or curve image.

The first example shows the entire process in a step by step way,

using a binary image of a square. For most images, only the mag-

nitude values produce meaningful pictorial displays, and only

these images will be shown in later examples. In all the exam-

ples, the results of a 16-fold compression and a subsequent

reconstruction are shown.

Figure 3a shows a binary image of a bright square of size 32 by

32 centered in a 64 by 64 image. Figure 3b shows the result of

applying the zero-crossing edge detector to the image, while Fig-

ure 3c shows the image resulting from one iteration of the best

edge procedure. In both cases, the top image is the direction im-

age, and the bottom image is the magnitude image, both threshold-

ed so that all non-zero points are displayed. After the best edge

procedure has been applied, the directions of neighboring points

are more consistent. This is the reason for the slight lengthen-

ing of the two short line segments at the bottom of the second

direction image.

Figure 3d shows the four 32 by 32 images produced by the edge py-

ramid program. The images in the bottom row are the magnitude

(left) and the intercept (right) of each point. Those in the top

row are the direction image (left) and the error in direction

IL



(right). All images are thresholded so that non-zero points are

displayed. The important thing to notice here is the error image.

The only places at which errors in direction are detected are the

corners.

Figure 3e shows the results of applying one iteration of the best

edge procedure to the 32 by 32 images, and Figure 3f shows the 16

by 16 images produced by the pyramid process. The reconstruction

algorithm is applied to the 16 by 16 images in Figure 3g, and to

the reconstructed 32 by 32 images in Figure 3h. The results of

the reconstruction illustrate the ability of the edge pyramid to

retain full information in regions where there are long con-

sistent lines. It is only at the corners that information is

lost, and, in this case, a simple extension algorithm could be

appplied to restore the corners.

Figure 4 shows the results of running the whole process on the

edges produced from a gray level image of a tank (Figure 4a). The

original edge magnitude and the enhanced magnitudes are shown in

Figure 4b. Figure 4c shows the first level of the pyramid, the

best edges found at this level, and the second level of the py-

ramid. The first level of reconstruction and the final recon-

structed image are shown in Figure 4d. Figure 4e shows the result

of thresholding the magnitude images, all at the same threshold

value. It is clear that the important information has been re-

tained. A similar sequence is shown in Figure 5, starting from a

gray level image of part of an airport.

Figure 6, finally, shows what happens when an image has sharp

L~zc. J _______



corners and inconsistent edge that occur close together. While

the result of running the process is still clearly recognizable,

the edges have been broken up into very short segments at the

corners, and the reconstructed image is of clearly inferior qual-

ity to the original.
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A quadtree i's obtained from a binary image by suc(P;sive subdi--

vision into quadrants. If the original image is homogeneous, a

single leaf node is created Otherwise, the image is divided into

four quadrants, which become sons of the Toot node This process

is applied recursively until all terminal nodes are homogeneous.

Binary quadtrees have been shown to be useful :n representing

large images compactly, and many algorithms have been developed

for efficiently applying image processir,g techniques to images

represented by quadtrees (E2), [5]. [6], [9], 10], [19-29])

For gray level images, a class of quadtrees can be defined, based

on the brightness characteristics of the image The root node

represents the whole image, and typically stores the average gray

level. If the image is sufficiently homogeneoLs (i. e if the

variance in gray level is not too great) no subdivision is per-

formed. Otherwise, the image is divided into four subimages, and

four children of the root are constructed. As long as the vari-

ance in any quadrant is higher than a threshold, the process is

recursively -applied. The result is a tree that represents the

image to a degree of a:curacy dependent ors the threshold By

changing the threshold on the variance, a whole ,i,.s of gray

level quadtrees can be constructed More generally, a class of

quadtrees can be constructed using piecewise polynomial fits to

the data in each quadrant. Gray level quadtrees are useful for

image smoothing (Ranade & Shneier, C17]), shape approximation

(Ranade 11 #1., E15]), and segmentation (Ranade, [151. Wu et a.,

/:



1333).

Edge quadtrees are similar to the trees described above, except

that the information stored at each node includes a magnitude, a

direction, an intercept, and a directional error term. All the

information about the edge that is stored is used in constructing

the quadtree. As in the gray level quadtrees, a class of edge

quadtrees can be defined based on the directional error term.

The construction of an edge quadtree proceeds by first examining

the magnitude term, then the direction and direction error terms,

and then the intercept term. If a node has a sufficiently low

magnitude (i.e. no edge exists), then no subdivision is per-

formed. Similarly, if the error term is sufficiently small, no

subdivision is performed, with one exception, as follows. It may

happen that a number of parallel edge segments run through a qua-

drant, so that the direction term is consistent with the data,

and the error is low. Thus, a division based only on the error

would not be performed. It is clear, however, that the quadrant

does not represent the data at a sufficient level of detail to

enable the set of parallel segments to be reconstructed. Thus,

whenever the error term falls below threshold, a further check

must be made to ensure that the intercept points in the quadrant

are consistent (i.e. they lie along a line in the direction of

the direction term). Should this not be the case, the quadrant

must be subdivided. A final requirement for an edge quadtree is a

flag that is turned on should an edge terminate within a qua-

drant. In this case, the intercept will be the point at which the

/:



edge terminates. The result of applying this process recursively

to the image is a quadtree in which long edges that are nearly

straight give rise to large leaves, or a succession of large

leaves. Near corners, or where edges intersect, much smaller

leaves are needed, perhaps as small as individual edge elements.

A feature of edge images is the low percentage of points that

contain interesting information. This means that an edge quadtree

can be expected to contain many large leaves where there are no

edges at all.

Figure 7 shows the edge magnitude image for the airplane picture

of Figure 6, and the levels of the edge quadtree that are not

empty (levels 0, 1, 2. and 3). Note that the leaves are upright

square blocks in fixed positions, and that the shape of the quad-

tree is dependent on the global co-ordinate system of the image.

This is a characteristic of all quadtrees. It is one of the major

differences between this representation and the strip trees pro-

posed by Ballard ([13) (Section 4).

One of the advantages of the edge quadtree is that it can be used

to represent an image that may contain more than one curve. Of

course, a separate quadtree, perhaps smaller than the image quad-

tree, can be used to represent each curve, but it is preferable

to use a single quadtree, both in order to maintain registration

with the image and for compactness. Each curve in the tree can be

named, and all terminal nodes representing part of a curve can be

marked with the name of the curve. In addition, region-like in-

formation can be made available in the same structure, simplify-

/



ing the interactions between regions and linear features. Notice

that the quadtree for a closed curve and that for the region en-

closed by the curve have closely related shapes.

If only one linear feature is represented by a quadtree, many

operations become very efficient. If more than one curve is

represented, however, some of the operations need to be done at a

higher resolution, in order to ensure that the correct curves are

involved. A way of alleviating this problem is to assign the

names of curves passing through a quadrant to non-terminal as

well as terminal nodes. A bound has to be put on the number of

names allowed, however, because this may not be limited. All

non-terminals that have more named curve segments passing through

them than the bound allows can be flagged. When curve operations

involving flagged nodes are executed, the descendants of the

flagged nodes must be examined recursively to find the first one

with the required names.

Many operations that are useful for manipulating edge and curve

information can be implemented efficiently using edge quadtrees.

Most of the algorithms are adaptations of quadtree algorithms for

region representation. Only the broad outlines and necessary

modifications will be given here.

First, an algorithm is presented for naming each curve in a quad-

tree. It is based directly on the algorithm for finding connected

components of an image represented by a quadtree (Samet, [21]).

First note that a leaf node can have no more than nine different

curves passing through it . This is the number of "smooth" con-



tinuations through a sequence of three pixels, assuming less than

a 90 degree change of angle between pixels. Thus the number of

names at a leaf is bounded. (It is also necessary to assume that

two or more curves cannot have arcs in common).

The algorithm involves three phases. The first pass assigns names

to each curve node in the quadtree by starting at the North-West

corner of the tree, and examining the South and East neighbors of

the curve nodes. If the direction of a neighbor is compatible

with node the (i.e. within the error tolerance) and its intercept

is also compatible (i.e. lines up along the common direction with

the node's intercept), the neighbor is given the same name. Oth-

erwise, a new name is assigned. If a node is found that has al-

ready been named, and the node is compatible, an equivalence is

established between the nodes.

The second phase processes the equivalent pairs to produce

equivalence classes, while the third and final phase tra'erses

the tree again, and assigns a single name to all members of an

equivalence class. The names at the leaves of the tree can be

propagated up to the non-terminal nodes at the same time# a non-

terminal node being flagged if too many names are assigned to it

Many operations commonly applied to linear data are facilitated

by the quadtree representation. For example, to find the length

of a curve segment, the tree is traversed starting at the root,

and looking at nodes until the first leaf node belonging to the

segment is found. The length contributed by this node is calcu-

lated as the length of a line through the intercept with direc-



tion given by the direction component, and bounded by the node's

borders. To find the rest of the nodes in the curve, the FIND-

NEIGHBOR and FIND-CORNER algorithms defined by Samet([27]) are

used. They are applied on each side in the direction given by the

node's direction component. Nodes that are further away from the

leaf's direction than is allowed by the error tolerance can be

ignored. The lengths of the nodes found in this way are added to

the curve length, if they have the correct name. Each new node

after the first will have at most one successor. When no more

neighbors can be found, the length has been calculated. For

closed curves, the original node must be flagged to ensure that

the process terminates.

Other operations are easily defined as modifications of regular

quadtree operations. The distance from a point to a curve can be

calculated using a variant of the distance transform algorithm

(Samet, C253). Instead of finding the distance from a point (or

the center of a BLACK node) to the nearest WHITE, or boundary,

point, the distance to the nearest curve point is found. Other

algorithms, like union and intersection (Hunter & Steiglitz [9),

Shneier [283), require almost no alteration.

Interactions between region and boundary information are natural

in this representation because of the registration of the images.

Operations like the Superslice algorithm (Milgram [12]) can be

performed on the quadtrees by taking advantage of the information

contained in the shapes of the trees. The Superslice algorithm

attempts to find the best segmentation of an image by matching



edge and region information. A number of thresholds are applied

to the image, giving rise to various new images. Each of these

images is matched with the edge image, and that with the best

region/boundary fit is chosen as the segmented image.

In the quadtree, this operation can be simplified and made more

intelligent. Starting with the edge, and noting that the shape

of the .-vgion quadtree is constrained by that of the edge quad-

tree, class of candidate thresholds can be stored at each leaf

nod, in tfie quadtree, each candidate giving rise to a region sub-

tree with a shape consistent with the edge subtree. If, after

all the nodes have had candidates assigned, there is a single

threshold that gives the correct shape (i.e. the same threshold

appears at all nodes), that threshold will give the required seg-

mentation. Otherwise, a number of local thresholds may be applied

to subimages, or an approximation to the segmentation can be made

by choosing a compromise threshold.



C omparison wih other methods

Another h er.rchtcal quadrant-based method for repreernting Ldqes

is that of Omolayole and Klinger ([13]). They recursively subdi-

vide an edge image into quadrants down to a 2 by 2 level A

number of edge patterns are then sought in each subquadrant, and,

if too few of these are found, the quadrant is discarded. The

result is a kind of tree structure, with the leaves containing

template-like representations of the edge data in them. The main

aim of this method seems to be to discard the areas of the image

that contain little or no i'iformation. For edge images this can

be expected to save fairly large amounts of storage The edge

quadtree differs from this approach in its treatment of quadrants

containing edge information. Instead of having fixed-sized

leaves, the quadtree allows leaves to be of the largest size con-

sistent with the edge information they represent.

Other methods that have been devised for representing linear in-

formation are the upright rectangles of Burton (C41), the strip

trees of Ballard ([1]), and the chain codes of Freeman([18]).

Freeman has developed one of the most compa t and well--known

boundary representations, called chain codes These codes

represent the relative grid positions of successive line points

in a digital image. They are perhaps not as well suited to

representing edge Informatiin as line informaton, but have Lhe

advantages of being compact and are not tied to at, particular

co-ordinate system.
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Mijrtnri presented a method of representing polygonal linos t,ing a

%eriot of upriqht rectangles His work w,,s extended by Ballard,

who defined a representation for curve inftrmation called strip

trees. A strip tree is a representation of a curve, obtained by

successively approximating parts of the curve by enclosing rec-

tangles. Tfe structure is a binary tree, with the root node

representing the bounding rectangle of the whole curve. This rec-

tangle is broken into two parts at a point of maximum distance

from the line joining the endpoints of the curve. The '.wo parts

are children of the root, and may be recur-ively subdivided until

an error bound is satisfied. Note that the strip tree is not

unique in cases where more than one extreme point exists.

All these other representations are able to represent only single

curves# while the edge quadtree representation is able to

represent several curves ir the same tree. The edge quadtrees and

edge pyramids are also ir registration with the image, and with

region-based representations like ordinary quadtrees and pyram-

ids. This gives them a further advantage over the other represen-

tations. Wh,'re the other methods, -and p.articularly the cnain

code, gain oer the edge quadtree is in compactness, although the

edge quadtree is actually storing more infurmation than the other

methods, and may give rise to better reconstruction of edge in-

formation.



There are two main reasons for developing pyramids for linear

features. The first is to provide compression of the data, for

example to allow linear features to be detected from low resolu--

tion images in a hierarchical image data base, thus reducing the

number of full resolution images that need to be examined. The

second reason is to enable the most prominent edge features (or

the edge features larger than a given size) to be extracted 'rom

the image, and to discard smaller features.

It would be impractical to search a large image data base for the

existence of an object with a set of known features. Rather, it

would be useful to be able to filter out most of the image-. on

the basis of gross tests, leaving only a few to be examined more

closely. For region- or blob-like features, this ability can be

provided by gray-level pyramids or quadtrees. While the most na-

tural form for storing linear information is probably a linked

list, it is desirable for uniFormity to store linear feature in-

formation in a similar way as regional feature information. rhis

facility is provided by the edge pyramids and edge quadtrees

presented in this paper. Of course the representations are useful

not only for edges, but for any linear information

The second reason for building an edge pyramid is to enable noisy

edges and edges that are too small to be iltered out of the im-

age. In fact, this is achieved in two ways, both through the la-

teral best edge process and through the pyTamid process. The best



edge process is not designed specifically to enhance good edges

and suppress bad ones, but it has this effect except where two

edges intersect or two edges pass very close to each other The

pyramid process causes short segments to be lost high in the py-

ramid because, after a while, they fail to find good continua-

tions. Note, though, that short broken edge segments could be

joined together if the gaps were sufficiently small relative to

the image resolution. The main requirements for an edge to con-

tinue to exist at successively higher levels in the pyramid are

consistency and good continuation.



Conclusions

Two related representations for linear information have been

presented. Edge pyramids have been shown to be able to store the

important edge information in an image, even at fairly low reso-

lution. with the ability to reconstruct images that look very

much like the originals. The main loss in information is at in-

tersections of edges, or where edges pass close to each other.

Small edges, usually representing noise, are also lost

Edge quadtrees have been presented as an alternative hierarchical

representation for linear feature information, with the ability

to represent the information at variable resolution, depending on

the local consistency of the data. The advantages of edge quad-

trees over other representations are their ability to represent

more than one curve in a single structure, and their registration

with the image and with other region-based representations for

images.

!V
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Figure j. Two neighborhoods used in constructing pyramids. The
central 2 by 2 regions are disjoint, but each neighborhood shares
rows or columns with it neighbors.
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Fgure The ways in which ede points may be ex ended, a. For
a two-point edge# there are six consistent continu.-tions, b. For
a one-point edge, there are fiv consistent continuations.
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(a)
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(b) (c)

(d) (e)

EArS.= Z. The edge quadtree of an airplane imale. a. The edge
magnitude image. b. The lowest level (level 0) of the edge quad-
tree (individual pixels). c. Level 1, having 2 by 2 blocks of
pixels. d. Level 2, having 4 by 4 blocks. e. Level 3, having 8
by S blocks.
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